Least-Squares-Based Iterative Identification Algorithm for Wiener Nonlinear Systems

نویسندگان

  • Lincheng Zhou
  • Xiangli Li
  • Feng Pan
چکیده

This paper focuses on the identification problem ofWiener nonlinear systems.The application of the key-term separation principle provides a simplified form of the estimated parameter model. To solve the identification problem of Wiener nonlinear systems with the unmeasurable variables in the information vector, the least-squares-based iterative algorithm is presented by replacing the unmeasurable variables in the information vector with their corresponding iterative estimates. The simulation results indicate that the proposed algorithm is effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least squares based and gradient based iterative identification for Wiener nonlinear systems

This paper derives a least squares-based and a gradient-based iterative identification algorithms for Wiener nonlinear systems. These methods separate one bilinear cost function into two linear cost functions, estimating directly the parameters of Wiener systems without re-parameterization to generate redundant estimates. The simulation results confirm that the proposed two algorithms are valid...

متن کامل

Hammerstein and Wiener Model Identification Using Rational Orthonormal Bases

In this paper, non iterative algorithms for the identification of (multivariable) Hammerstein and Wiener systems are presented. The proposed algorithms are numerically robust, since they are based only on least squares estimation and singular value decomposition. For the Hammerstein model, the algorithm provides consistent estimates even in the presence of coloured output noise, under weak assu...

متن کامل

Identification of Nonlinear Systems using Orthonormal Bases

In this paper, non iterative algorithms for the identification of (multivariable) nonlinear systems consisting of the interconnection of LTI systems and static nonlinearities are presented. The proposed algorithms are numerically robust, since they are based only on least squares estimation and singular value decomposition. Three different block-oriented nonlinear models are considered in this ...

متن کامل

Recursive Extended Least Squares Parameter Estimation for Wiener Nonlinear Systems with Moving Average Noises

Many control algorithms are based on the mathematical models of dynamic systems. System identification is used to determine the structures and parameters of dynamic systems. Some identification algorithms (e.g., the least squares algorithm) can be applied to estimate the parameters of linear regressive systems or linear-parameter systems with white noise disturbances. This paper derives two rec...

متن کامل

Data filtering based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition

This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition based least squares iterative algorithm is presented for estimating the parameter vectors in each subsystem. Moreover, a data filtering based decomposition least squares iterative algorithm is proposed. The simulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013